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1.  Introduction ' ■■.^?Vv';;:-:^;'^'- ..■;-';;';'-'; 

In the last two decades, much research effort has been 

devoted to the application of the stochastic process theory 

in the general area of engineering mechanics and structural 

engineering for the purpose of predicting the dynamic structural 

performance with a better accuracy and of assessing the over- 

all structural safety with a better reliability by considering 

more realistic analytical models of load-structure systems. 

Naming only a few, possible applications of this stochastic 

approach include  (a)  analysis of panel vibrations of aircraft 

and submarines induced by boundary layer turbulence,  (b)  analysis 

of ship oscillations caused by ocean waves, particularly during 

a storm,  (c)  analysis of aircraft response to gust vertical 

velocity,  (d)  response analysis of off-shore structures to wave 

and wind forces,  (e) statistical strength analysis of engineering 

materials, particularly of modern composite materials, with 

randomly distributed thermo-mechanical properties,  (f)  analysis 

of the effect of randomness in geometrical configuration of and 

mechanical constraint on a structural component due, for example, 

to fabrication errors on the vibration and buckling eigenvalues 

and,  (g)  study of random surface roughness of bridge pavement 

and airport run-way for the purposes of analyzing the vehicle and 

aircraft vibration caused by the roughness and of stress analysis 



of pavement systems under the action of vehicles and aircraft.  ;; . 

In spite of the recent remarkable advance in this area of 
^ •   " * '...--■' 

study, however, the present state of art still leaves a number 

of difficulties unsolved that must be overcome before the 

approach becomes more useful.  Such problem areas include 

(1) random response analysis of highly nonlinear structures, 

(2) failure analysis of structures under random'loading, 

(3) analysis of extremely complex systems and, 

(4) random eigenvalue problems. 

The recent advent of high speed digital computers, however, 

has made it not only possible but also highly practical to apply 

the Monte Carlo techniques to a large variety of engineering 

^problems.  The present paper presents a technique of digital 

-simulation of multivariate and/or multidimensional Gaussian random 

processes (homogeneous or nonhomogeneous) which can represent 

physical processes germane to structural engineering.  The paper 

also describes a method of digital simulation of envelope functions, 

Such simulations are accomplished in terms of a sum of cosine 

functions with random phase angles and used as the basic tool in 

a general Monte Carlo method of solution to a wide class of 

problems in structural engineering, particularly those mentioned 

above. 



2.     Simulation of a Random Process:  A Background v    r ^ • 

A basic representation of a homogeneous Gaussian (one- 

dimensional and one-variate) random process f0 (x) with me?n zero and 

spectral density S0 (CD)  in the form of the sum of the cosine 

functions has existed for some time [1] • 

N 
f(x) = /2 S A cos (a x - * ) (1) 

_  .   JC        iC       JC 
k=l  .   .. 

where  $   are random angles distributed uniformly between 0 and 
-.•■■-.. k ; 

2* and independent of §.(k ^ j), and 

Ak = tS° (CD,) Acid* ,  a^ = (k - |) ACD (2) 

with ■        . ■ ■''■'.' ;, 

S^((D); = 2S0 (CD) (3) 

being the one-sided spectral density function (see Fig. 1). 

For digital simulation of a simple function f(x) of f(x)  and 

therefore of  f0 (x),  Eq. 1 is used with  $  being replaced by 

their realized values  cp • 
Jv 

N 

f (x) = /2 E A, cos (oi x - cp, ) (4) 
k=l 

With the aid of Eqs. 1 and 4, it is easy to show that Eq. 1 is 

ergodic at least up to the second moment. 

Speaking of structure-related applications, however, until 

Borgman [2] published a paper simulating ocean surface elevation 



as a multidimensional process essentially in the same form, little 

attention had been paid to this representation in spite of its 

substantial advantage over the standard method in which a random 

process was digitally generated as output of an appropriate 

(analytical) filter subjected to a simulated white process.  The 

use of this filtering technique, although limited in its practical 

applications to a one-variate one-dimensional process has dominated 

a large number of papers involving simulations of a random 

process. 

Practical digital simulation of a multidimensional process 

has been made possible, as mentioned above, by Borgman [2] in 

principle through the preceding expression consisting of a sum 

of cosines and by Shinozuka [3] whose method reduces, in case of 

One-variate one-dimensional situations to the use of the following 

expression; 

2 *■ N 

f(x) = a(-)   S  cos(m x - ep ) (5) 
k=l 

where cp  are as previously defined and CD  are realized values 
k J^ 

of random frequencies distributed according to the density 

2 
function    g (tu)   = S0 (CD)/<T       with 

00 

a2  = J S0 (en)   dec (6) 

Borgman [2] and Shinozuka [3] also investigated the digital 

simulation of the multivariate (but one-dimensional) process, 



the former making use of the filtering technique and the latter 

in the more convenient form of the sum of the cosine functions. 

Reference [4] shows that the autocorrelation function 

R(F) of f (x)  converges to R0 (F) of f0 (x)  in the form of 1/N
2 

as N -♦ °°.  The same trend in convergence can be shown [4] to 

exist between the spectral element S (CD) Ato of f (x) and S0 (to) Ato- 

of  f0 (x). 

It is interesting to note that f (x) in Eq. 1 can be 

interpreted as a canonical expansion of a Gaussian process  f0 (x) 

with mean zero and spectral density S0 (to).  To see this, express 

f„(x)  in the form of the spectral representation 

00 

itox 
f0 (x) = J"  e ^dZtto) (7) 

where Z (to), called spectral process, is orthogonal in the sense 

that the increments dz (to ) and dZ(to_)  are uncorrelated when 

Employing the orthogonal condition of Z (to), the auto- 

correlation function of f0 (x)  is found to be 

°° 
R0 (?) = E[fe (x)f0 (x+Ol =7 elQ?E|dZ(to)|2     (8) 

where E  indicates the expected value. 

Assume that the spectral density function S0 (to)  exists. 

2 
Then E|dZ(to) j  = so (to) dto, and Eq. 8 is reduced to the well- 

known Wiener-Khintchine relationship.  For the case when f0 (x) 



is real,   Eq.   7 becomes   [4] 

f. M   =  f   Icos ouxdU(cu)  +  sin cuxdV(cD)] (9) 
e 

where U (CD) and V (u>) for any to a 0 are two mutually orthogonal 

processes, both real and with orthogonal increments, such that 

2 2 
E[dU(co)]  = E[dV(a>)]  = S°  (CD) da> 

It is pointed out that if one defines 

4 du (üI)=   [2S° (CD  )   A CD]      cos §k  = /2  Afc  cos   $k 

dV(a5k)=  (2S°1(cok)   ACD]^ sin ifc = /2 -A^ sin $k 

(10) 

where CD , ACD and $,  are defined in Eqs. 1 and 2, then all the 
k        k 

conditions imposed on U (CD) - amd V(CD) are satisfied, and Eq. 1 

is basically consistent with the spectral representation. 

It is seen from Eq. 9 that a homogeneous process is addi- 

tive ly built up by orthogonal oscillations with random amplitudes, 

A canonical expression of a real random process  f0 (x) 

can be written in the form [5] ; 

f8 (x) = 2  a v (x) (11) 
k=l k k 

where a  are uncorrelated random variables with mean zero and 
k 

v (x)  are real (deterministic) functions of x;  a, are called 
k 

the coefficients of the canonical expansion and v. (x) the 

coordinate functions. 



By multiplying both sides of Eq. 11 by a.,■taking the 

expected values and using the fact that a.  are uncorrelated, 

one can show that 

v.(x) = j E[a. f0 (x)] (12) 

where    D.     is  the variance of    a.; 
D D 

D.  = E[a2] (13) 

At this point, write  f0 (x)  in Eq. 9 in the following 

approximate form? 

N 
f(x)   - S     [cos m x dU(cu )  +  sin CD xdV(cn )] 

■■'.■■- « ■ ■  k     k       K     K 
. . '■ k=l ■ . 

;..""'.■ N .'. ■'■ ."■■■"; ".V'v 
v      = /2 E  (A, cos CD x cos i    +  A. sin CD x sin $ ) 

= /2 2 A, cos (CD, x - $, ) (14) 
, ,  K     k    k 
k=l 

This is an approximation to f0 (x)  since the integration is 

replaced by a summation involving a finite number  (N)  of terms, 

The degree of the approximation depends on (a)  whether the 

cut-off frequency CD   (see Fig. 1) is large enough and (b) 

whether Acu in Eq. 2  is small enough so that 

« kAco 
AT   =     f S« (CD) dcD = s° (<D  )■  ACD (15) 

■'     * %(k-l)ACD       V 



is valid.  Being the sample function of  f (x), f(x) possesses the 

same approximate nature when considered as the sample function 

of f0(x). 

Within the context of this approximation, Eq. 14 can be 

interpreted as an (truncated) canonical expansion of f0 (x) 

in the form of Eq. 11 if a.  and v. (x)  are defined as 

a    =/2A, cos §'. ,     v„, , (x) = cos <x>.x 
2j-l      3 3 .  2D-1 3 

(j=l,2,...,N) (16) 

a  =/2A. sin $ . ,       v , (x) = sin CD.X 
2j      3 3 2j 3 

In fact, the coordinate functions in Eq. 16 follow from 

Eq. 12 if the coefficients a  in Eq. 16 and f(x) in the form 

of Eq. 14 are used therein.' 

It can then be shown [5] (again within the context of the 

approximation mentioned above) that if these v (x)  defined in 

Eq. 16 are used, then for any given number of N and for the 

particular selection of a  in Eq. 16, Eq. 14 gives the best 

approximation to the random function f0 (x)  in the sense that, 

among all possible series expansion of f0 (x)  having the same 

number of terms, Eq. 14 minimizes the expectation of the square 

of the residual term at any value of x. 

There is another constraint to be imposed upon Aao.  This 

constraint is due to the periodicity of the sample function f (x) 

8 



Obviously, the period of f (x)  is  T0 =2jt/AcD and therefore, 

depending on the purpose of the simulation,  Am has to be so 

chosen that T0  is long enough for that purpose. 

A significant improvement in the efficiency of digital 

simulation has recently been suggested by Yang [6] writing 

f (x) = «/"Äflö  ReF(x) (17) 

in which Re F (x)  represents the real part of F(x)  and 

N i ~L\        *■%*■ 
F(x) = E {[2S° (c«J]* e  K)e    • (18) 

k=l  ; -1- k  .   .■..■:■■.■■>-, 

h   "iCPk is the finite complex Fourier transform of [2S° (oi )]2 e 

with ov and cp  defined in Eqs. 1 and 2.  The advantage of 

Eq0 18 is such that the function F(x)  can readily be computed 

by applying the fast Fourier transform (FFT) algorithm, hence 

avoiding the time-consuming computation of a large number of 

cosine functions. 

In the preceding discussion, the spacing ACD in the frequency 

domain has been taken as constant.  This, however, does not 

necessarily have to be always observed.  It is possible and in 

fact may even be advisable to use variable spacings depending on 

the extent of fluctuation of the spectral density to optimize 

the number of cosine terms in the summation in Eq. 1;  finer 

spacings in those domains of frequency where the fluctuation of 

the spectral density is more rapid and coarser spacings elsewhere. 



It is also likely that such variable spacings will increase the 

period T0  of the simulated process.  If this is done, however, 

the simulation through the FFT technique does not appear to 

be possible. 

In the same reference [6], Yang also proposed to simulate 

the envelope process V0 (t)  of a random process  f0 (x)  by 

following the definition of the envelope process [7] 

]:r-;r':^yM'v' (t) = tf?(x) + ^(x) ]* (19) 

where  f0 (x)  is the Hilbert transform of f0 (x)  and, in the 

present case, can be written as 

as 

fo (x)   = j   [sincüt dV(ü))   -  cos cnt dV (CD) ] (20) 
o 

A A 
It then follows that f0 (x)  can be simulated as f (x); 

'■■■    'N   '■ '  ■■'•.■:/ 

: f (x)   = /2 2    A.    sin (Q x - q>  ) (21) 
ks±1    Jc k Jc 

Hence, the envelope process V0 (t)  can be simulated as V(t); 

V(t) = [f2(x) + f2(x)]* (22) 

As an example, consider the response process  y0 (t) of 

single degree of freedom system to a Gaussian white noise 

excitation x0 (t)  with the constant spectral density S0; 

y0 (t)  +  2Cco0  y0 (t)  +  CD
2
 y0 (t)   = x0 (t) (23) 

It is well known that the spectral density of    y0 (t)     is 

"yW   -       , 2  ,   S"     2  2  2 '24' 
(Cü     -   üü0    )      +   4Q    CU0Ü5 

10 



and the standard deviation a  of y0 (t)  is 

•       ■'■■■"■■■"v-c-Ä-o*   v:;:rv;^'->)"^ 
With the aid of Eqs.l, 21 and 22, a segment of sample .'   '[ 

function y (t)  of simulated process y (t)  for y0 (t)  and 

that of simulation V(t)  of the envelope process V0 (t)  are 

computed and shown in Fig. 2.and 3.  Fig. 2 is for the case 

where the damping coefficient Q  =  0.02  and hence the process 

y0 (t)  is narrow-band.  This fact is well demonstrated by the 

smooth behavior of the  sample  envelope.  When the local 

maxima of the  sample  envelope do not coincide with the local 

maxima (peaks) of the process, they reflect the local minima 

(troughs) of the simulated process.  Fig. 3 shows the sample functions of 

V(t)  and  y(t)  for £ = 0.5.  In this case, the process 

y0 (t)  is substantially wide-band and this fact is clearly seen 

from the much wilder fluctuation of both simulated envelope and 

simulated process, although the simulated envelope surprisingly 

well reflects peaks and troughs of the simulated process even though 

the process y0 (t)  is wide-band.  In terms of simulation 

efficiency, the computer time will be significantly reduced if 

one is interested in peak- and trough-values of the process and 

if the process is narrow-band, since then the smooth nature of 

the envelope function makes it possible to use much larger 

interval between successive time instants at which the values of 

11 



the simulated process is evaluated.  The order of magnitude of 

this interval can be that of the apparent period of the process, 

which obviously is much too large for simulation of the process 

itself. 

Again following Yang [6], write  f(t)  as 

f(t) = \!~7ü   ImF(t) (26) 

and hence V(t)  can also be simulated through the FFT technique. 

It appears at this time that the method of simulation 

considered herein (Eq. 1) has a difficulty in achieving a 

reliable evaluation of the first passage time distribution 

when the threshold value is much larger than the standard de- 

viation of the process.  Lyon's work [8] points to this fact, 

although this difficulty is by no means unique to the proposed 

method.  It is suggested, however, that a further investigation 

be performed on this point. 

The Gaussian property of the simulated process (Eq. 1) 

comes from the central limit theorem because it consists of a 

sum of a large number of independent functions of time (see 

pp. 182-183 in [1]).  Efficient simulation, or straight forward 

simulation if not efficient^of a non-Gaussian process appears 

to be an open problem at this time unless the process is restricted 

to a certain class of processes such as the filtered Poisson 

process. 

In the following sections, a method for digital simulation 

of multidimensional and/or multivariate processes are briefly 

12 



described.  However, for these cases, the rigorous discussions 

on the interpretation as canonical expansion, the use of the 

FFT technique in actual digital computation, the envelope 

simulation, the problem of the first excursion time, the simu- 

lation of non-Gaussian processes, the convergence of the auto- 

correlation function and the spectral density of the simulated 

process to the respective target values, etc., are mostly subjects 

of future studies. 

13 



3,.  Simulation of a Multidimensional Homogeneous Process 

The autocorrelation function of an n-dimensional homogeneous 

real process  f0 (x)  defined by 

■^ 

is even in 5  (symmetric with respect to the origin of the 

n-dimensional space) 

R0 (t)   = R0 (-|)* (27) 

where    x,   and x0     are space vectors  and    F  = x^  - x    is  the -1 -2 ^ _\     ~2       ~i 

separation vector.     Assume that the n-fold Fourier transform 

of    R0 (F)   exists.     The spectral density function of    f0 (x)     is 

then defined as 

■ '■■       .■       ■<»''" ■■'■■.'   V _ ■ ■.■•-. -■-■ 

S0 (CD)   = —-   ■/    R0 (g)   r^#1d| (28) 
■    (2*)n        -»        - ■.-..-■ 

where as    is the frequency (wave number) vector and _CD • 5;  is 

the inner product of m    and £ ,  and, for simplicity 

tmmCO «-CO «•(B 

with n being the dimension of the vector §.  It follows from 

Eq. 27 that 

/ R0 (£) sin (9 • £) dj; = 0 
— 00 

and, therefore, from Eq. 28 

S0 (cu) = S0 (-05) (29) 

14 



Then. 

S0 (CD) =    n  /  R0 (O cos (CD • _£) de ■■.:.' .-\  (30) ; 
(2K)   -»; 

and is real. 

It can be shown [9] that R0 (§) is nonnegative definite 

and therefore it has a nonnegative n-fold Fourier transform; 

S0 (CD) ^ 0 (31) 

Based on these properties "of S0 (OJ) , a method of simulating 

f0 (x)  is proposed in the following: 

Consider an n-dimensional homogeneous process with mean 

zero and spectral density function S0 (co)  which is of insigni- 

ficant magnitude outside the region defined by 

:   -°° < 0i„  i* .05 5* CD  < °° 
—£       —      —a 

and denote the interval vector by 

.CD, -CD,    CD„ -CD „        CD --CD „    • 

(AcDr   Aco2,..-.,   AcDn)   =(     ^     U ,    2u
N   2£     nu

N "*  )   (32) 
1 2 n 

where usually    _CD    = -_CD     .     Then the process  can be  simulated by 
h U 

the  series 

N.       N N 
1 2 n , 

f (x)   = /2     E E    . ..E     [S0 (CD..    ,üi       ,.,CD.    ) ACD, ACD  . ..ACD ] 
Ik      2k_ nk 12 n 

k,=l k =1    k =1 1 2 n 

i. /. n 

cos (^    -    +  o>      -   + ... „       xn .+■ f. k  ) (33) 
1 2 n 1 2 n 

15 



' where ' .,-..-■■..-.■. 

*k k   k = independent random phase uniformly 
1 2* * * n 

distributed between  0 and 2« 

a).,  = o\ „ + (k-|)AcD.    k. =1,2,...,N.   i = l,2,...,n 
xk.   li    i     l     i i     .' ■' 

As in the one-dimensional case, the digital simu- 

lation f(x)  of f (x)  can be achieved by using Eq. 33 with 

$ 
k k ...k  being replaced by their realized values cp ,    ,  . 

■L ^   n jc K ... K 
1 2   n 

To avoid the lengthy expressions in the subsequent discussion, 

f (x) will be written in the following compact form: 

N : 
f(x) = /2 Z A (CD) cos (o> •   x + cp.) (34) 

k=l   k      *       * 

where 

N = N N ...N 
12-  n 

A^) = [S0 (Qk) Acn1Aü32...Acon]*= [S0 (c^)ACD] * -    (35) 

It is noted that if the symmetric condition of S0 (CD)  is used, 

N in Eq. 33 can be reduced by one-half.  Furthermore, if the 

process is isotropic, N is reduced to — .  Fig. 4 illustrates 
2n 

the significance of A (CD, )  for two-dimensional cases where, 
k 

however,  A. .   is written for A (CD ,■   <u  ■).. 

It can be shown [4] that the ensemble average of f (x)  is 

zero, and the autocorrelation function R(§) of f (x), becomes 

N  2 
R(£) = S A (ü^) cos^ • I) (36) 

16 



''■■■■ 2 ' V-'v:^-;":-;"''.: 

Upon substituting A (ox) = S0 (ux_) Ato, and taking the limit as 

N -* » (in the sense that N_ ,N.,... ,N "•-•"» simultaneously) one 
.... 1 2     n 

obtains • ■ 
00 

R(£) = J  S0 (co) cos (en • _§) dm = R0 (5) (3 7) 

where it is assumed S. (ca)   =0 for oi < <a.   and oo > ca  . 

This indicates that, when the ensemble average is considered, 

the simulated process  f (x)  possesses the target autocorrelation 

R0 (§) and therefore the target spectral density S0 (CD). 

It can also be shown [4] that the temporal (or spatial) mean 

< f(x) > is zero and the temporal autocorrelation 

R* (?) = < f (x) f(x+ %)   >    becomes 

N      2 
R*(§)   =    S    A   (ax)   cos(ax    .  .5). (38) 

"■.:;-■:■;. -.' ;   k=l .    . ^     .;■ -   ■ •■ .; - 

As    N -» =°,   Eq.   38 becomes 

so 

R* (0   =    ,f    S0 (co)   cos (en  •   £) du = R0 (|) (39) 
"— —00 

From Eqs. 36 and 38, it is seen that the process f (x)  in 

Eq. 33 is ergodic regardless of the size of N.  This makes the 

method directly applicable to a time domain analysis in which the 

ensemble average can be evaluated in terms of the temporal 

average. 

Note that the simulated process is Gaussian by virtue of the 

central limit theorem. 

17 



As an example of digital simulation of a multidimensional 

process, consider a two-dimensional homogeneous Gaussian process 

f0 (t,x)  with mean zero and spectral density 

s (co k) = KL2  .  h!        -OLÜaJ     /4o) S0 (co,k) -  2 2 /3      2        (4u; 
• 2n  ; (1+c © )     it (a CD + k ) . 

where  t and x represent the time and the distance respectively 

and, correspondingly,  CD and k the frequency and the wave 

number.  It is known that such process   f0 (t,x)  is a satis- 

factory model of a fluctuating part of wind velocity along a 

straight line direction x.  In the wind study, however, it is 

customary to consider the Fourier transform S0 (cu,£)  of the 

autocorrelation R0 (T,^) = E[f0 (t,x) f„ (t+T, x+;)l only with 

respect to T .  In fact, the .form of S0 (CD, £)  consistent with .  - 

Eq. 40 is 

KL      Icul     -a|cD|U| 
S0 (co, 5) =  2" *  2 2 4/3 * e <41> 

2lT       (1+ C CD ) 

a familiar form for a fluctuating part of wind velocity at the 

reference altitude of 33 feet where L = 4000 ft., K = surface 

drag coefficient,  a = constant,  C = L/(2jtU_3)  with U   being 

the mean wind velocity at the reference altitude.  For U  =40 mph^ 

a = 0.02 ft» sec and K = 0.03, the sample functions  f (t,£)  of 

f0 (t,^)  are computed and shown in Fig. 5 at '■§ =0, 50 and 200 ft. 

One can easily see in this example that the correlation almost 

disappears as the separation .5  increases to 200 ft. 

18 



4.  Simulation of Multivariäte Multidimensional Homogeneous Processes 

Consider a set of m homogeneous Gaussian n-dimensional pro- 

cesses f^(x)  (j = 1,2,. . . . . .m) with mean zero and with the cross- 

spectral density matrix S (ci>)  defined by 

s^te) s-12(«) 

S2lCffi)     S22^} 

Sim^ 
S2m^ 

*v*<*)     Sm2^ S° (en) 
mm 

(42) 

where s!, (CD)  is the n-fold Fourier transform of the cross 
3k - 

correlation R* (P). 

Due to the fact that R*k(,|.) = *£•(-£.)> one obtains 

s-k(») -^(co) (43) 

where the bar indicates the complex conjugate.        _ 

The matrix S°(ca)   is therefore Hermitian.   As in the case of 

a one-dimensional multivariate process[10],it can be shown [4] 

that the matrix S°(cu)  is also nonnegative definite. 

Suppose one can find a matrix H(a>)  which possesses 

n-dimensional Fourier transform and satisfies the equation 

S(m) = H(cu) H(co)T (44) 

where S° (m)  is the specified target cross-spectral matrix and T 

indicate the transpose.  Then f. (x)  (j=l, 2,...,m)  can be 

19 



simulated by the following filtering technique [2, 11]; 

m 
f.(x) = s f  h (x-g)-.-n. ( §)d| (45) 

where h.n (x) is the n-dimensional Fourier transofrm of H  (CD) ; 
jk ]K 

h.,(x) = f   H.,^)«"1-'^ 
•—00 

and "Pk(x)  is an independent n-dimensional normalized white 

noise component such that 

^^j^^^^ = 6(xd " ^jk 

■ with-" 

/«CS^J = 6(xirX21)5(x12"X22)**----6(xln " ^ 

It can be easily verified that the f.(x) (j = l,....m), 

as simulated by Eq. 45, satisfy Eq. 44 and thus represent the 

target processes. 

To find the matrix H (a)     in an efficient way, one can 

assume that H (CD)  is a lower triangular matrix; 

0     0  ... 0 

H(CD) = 

H1;L (05) 

H21C^)   
H22(-J   ."  * * * ° 

Hml(^   Hm2(^ 
. . H  (to) 

mm ~ 

Substituting above into Eq. 44, solutions are obtained (see 

Ref.12 for similar derivation) as 

20 



Hkk^ 
k 

\-i k>. 

i 
2 

k = 1,2,... .m (46) 

where D, (CD)  is the k-th principal minor of S (en)  with 

D being defined as unity, and 
o 

Hjk^> = Hkk^ 

where 

o/l,2, k-1, j-s CJ- g  £. f   m   m  m  JC~~ X g 

JL f £ f  * • * JV""" X f k^ i  = 

0^1,2, ,k-l, JN 
Vl.2, .k-l.ky 

Dkfe) 
*»■     ■*•# -**^ 

's» 11 ... 12. V * 

s°i -a,';'; 
•       e       • •        •  ■     •   .    • 

Sk-l,l 
O 

Sk-1,2   ' 

o 
sji *» ■■ 

k = 1,2, .m 

j = k+1,... .m 
(47) 

. S° S° 
l,k-l Ik 

-O co 
'2,k-1 S2k 

C"       o 
* 'Sk-l,k-lSk-l,k 

„o      o 
j,k-1   3k 

is the determinant of a submatrix obtained by deleting all elements 

except the (1,2,...k-1,j)-th row and (1,2,...k-1,k)-th column 

of S (CD). 

It is noted that the above decomposition is valid only 

when the matrix S (CD)  is hermitian and positive definite as 

can be seen from Eq. 46. 

Because the cross-spectral density matrix S (co)  is 

known to be only nonnegative definite, special consideration 
o 

is needed in those cases where S (CD)  has a zero principal 

minor.  For the discussion on this point, the reader is 

referred to Ref. [4]. 
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Since the real and the imaginary parts of cross-spectral 

density functions are respectively even and odd in ay it can be 

shown from successive substitutions using Eqs. 46 and 47. that 

(48) 

ReH., (to) = Re H  (-CD) 

Im Htl (03) =-Im H._ (-tu) 
]k 3* ~ 

for  j > k, and 

H. . (en) = H. . (-co) £ 0 
33 ~ 33 ~~ 

from which it follows that h. (x)  is real. 
3K 

If    H., (co)     is v/ritten in polar  form; 

^jk^   =   ^jk^U^jk^ (49) 

then, due to Eq. 48, the argument 0  (en)  is anti-symmetric 

in as ,   that is 

ejk(co) = -e.jk(-co) (50) 

with  6. . (co) = 0 . 
33 

Once H (en)  is computed using Eqs. 46 and 47, then instead 

of passing a white noise vector through filters, the process 

f.: (x)  can be simulated in terms of the following series 

j  N 

f3 ^ = ^ il^l*^ ]/ir~    COSi-£   ' * + ejm(ffii) + *ml] <51> 

where (a ,   Acu, N, and $   are essentially the same as defined 

previously for n-dimensional processes and 
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_■,   ImH. (ca.) 
' G. (cO = tan ( 1SMn-/   ■ (52) 

3tnu-i/        V Re H. (cat) S 
....  • -.:■,•■... :.-3m. .. 

It can be shown [4] that the processes  f. (x) (j = l,...,m), 

as simulated by Eq. 51, possess the target cross-correlation 

functions and hence the target cross-spectral density, with 

respect to an ensemble average. 

For digital simulation of sample functions of  f. (x), 

Eq. 51 is used with $ „  being replaced by their realized values. 
mx 
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5.  Simulation of Multidimensional Nonhomogeneous Processes 

Simulations of nonstationary processes have been studied 

dealing mostly with earthquake ground motion. The common feature 

of these studies is that a nonstationary process is simulated 

by multiplying by an envelope function the stationary process 

generated either by filtering a white noise [13,14] or by a 

series of oscillations with random frequency and random phase 

.115,16,17]. 

The efficient method of simulation that has been proposed 

for multidimensional homogeneous processes can be directly 

generalized to a nonhomogeneous process characterized by an 

evolutionary power spectrum-as introduced by Priestley [18,19]. 

It was seen from Eq. 9 that a homogeneous process is addi- 

tively built up by orthogonal oscillations with random amplitudes. 

This concept of orthogonal components can be extended to that of 

the evolutionary process f° (x)  expressed as 
e 

00 

f° (x) = P B(x,u)[cos üüxdU(üü) + sin cnxdV(cjü)]       (53) 
e      o 

where B(x,co) is a deterministic modulating function characterizing 

the "nonhomogeneity" of the process, and U (oi)  and V(cn)  are the 

same as defined in Eq. 10„ 

Using the orthogonal conditions of U (en) and V (cu), the mean 

square of f° (x)  is found to be e 
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"oo ..■•.-■■■•.-.■•' .   ob 

2   ,  2 
E[f°(x)]  = / B (x,to) S° (Cü) dco = ^ S° (x,co)' ä^C^g^M^^l: 

2 .'■■■•."■•/'-'"■■;•;■.■■:. :-:::;:'-:':.-'-\ ::-';-''•• .'";•■:■•.■;;-'■';•;',■■:•;;"■•'■ 

where S° (x,co) = B (x,tu) S°  (üü)  is defined as the evolutionary 

power spectral density function. 

For the detailed discussion and the estimation of the 

evolutionary power spectrum, the readers are referred to Refs. 18 

■■and 19. • 

The direct generalization of the above discussion to n-dimen- 

sional process is obvious.  Thus, if a real nonhomogeneous process 

has an evolutionary power spectral density function, the process 

f° (x)  can be simulated by 

N   2 * ' 
fe(x) = /2 E  [B (x,o^k) S(i£k) A ±n] ^ cos (o^ * x+ * )   (55) 

where B (x, CD)  is the n-dimensional modulating function and the 

remaining notations are the same as in the case of a homogeneous 

process given by Eq. 33.  It can be shown that the simulated process 

f (x)  possesses the target evolutionary power spectrum as 

N - °°. 

Note that in a particular case when B (x, ü)) = B (x), then 

f° (x)  can be obtained by multiplying a homogeneous process 

simulated from S0 (cu)  by the spatial envelope function B (x). 

A more detailed study with numerical examples on this method 

of simulation for nonhomogeneous Gaussian process with an evolu- 

tionary power spectral density has been made by Yang [6]. 
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In the following section, the Gaussian nonhomogeneous 

process with an evolutionary power spectral density is referred 

to as Gaussian evolutionary process for simplicity.^^       < 
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6.  Monte Carlo Solution of Structural Dynamics 

The preceding method of digital generation of sample 

functions of a Gaussian process can be used for the Monte 

Carlo solution of the following structural problems.  It 

is pointed out parenthetically that by adding a constant 

value m to the sample functions f(t,x)  described in the 

preceding sections, one can generate sample functions of 

the simulated process  f (t, x) + m associated with 

f0 (t,x) ■+ m . Note that the mean value of f0 (t,x) + m 

is no longer zero but it is equal to m. 

(a)  The method can be used in the response analysis 

of a nonlinear structure under random loading if such loading 

can be idealized as Gaussian homogeneous or Gaussian evo- 

lutionary process with constant mean values.  In particular, 

if the modes ^(x) of the corresponding linear structures 

are known, the solution y0 (t,x)  is in approximation ex- 

panded into a finite series. 

K 
y0 (t,x) = S q. (t) II. (x) (56) 

k=l ^    * 

When Eq. 56 is substituted into the governing (nonlinear 

partial) differential equation(s) of motion, one can usually 

get a set of simultaneous nonlinear butordinary differential 

equations involving the generalized forces of the 
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following form; 

F
k
(t)   =    J*  \&>   fo (t'X.)   d* ,: (57)      :; 

where  f0 (t,x)  is the random excitation process and D 

indicates an appropriate domain of integration.  Sample 

functions F,(t)  can then be digitally generated from 

Equation 57 with  f0 (t,x)  replaced by f (t;x); 

Fk(t) = J* M^(X) f(t,x) dx (58) 

It goes without saying that  f (t,x) + m has to be used 

in place of f (t,x)  if the excitation process has a non- 

zero constant mean value since the simple superposition of 

solutions does not apply in this case because of nonlinearity. 

The modes u, (x) often take the form of sinusoidal 

or hyperbolic functions or their combinations.  Therefore, 

the integration in Eq. 58 can usually be carried out in 

closed form since f(t,x)  is given as a sum of cosine 

functions.  This is one of the significant advantages of 

the present method of simulation over other existing methods. 

In fact, if the domain of integration D represents a 

two or three dimensional space, the numerical integration 

of Eq. 58 will usually become an insurmountable obstacle. 

Another advantage is that the present method does not 

require the nonlinearity to be small or moderate, a condition 
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which has to be imposed for standard linearization or per- 

turbation techniques. 

Once the sample functions  F (t)  are evaluated from 

Eq. 58, then the sample functions a (t)  of q (t)   can be 

numerically evaluated from the (simultaneous) nonlinear 

but ordinary differential equations mentioned above (replacing 

of course F^ (t) by i"k (t)  therein).  The experience shows 

that this phase of numerical work is not a serious problem. 

Finally, the sample function y(t, x)  of the solution 

y0 (t,x)  can be obtained from Eq. 56 with a   (t)  replaced 

■.-■■■•-'■■' -2 
by ^(t) •  The temporal average of y (t,x)  over a suffi- 

ciently long period of time will produce the mean square 

response in the Monte Carlo sense if the processes involved 

are ergodic.  Otherwise, the ensemble average has to be 

considered. 

Reference [20] represents a typical example of such 

analysis.  A segment of a sample function of the tip deflection 

U(0,t)  of a vertical pile of uniform cross-section in 

deep water (Fig. 6) having nonlinear drag effect and sub- 

jected to unidirectional wind-induced waves is shown in 

Fig. 7, where a segment of a sample function of the response 

of the corresponding linear pile (without drag term) is 

also shown for comparison.  In this study, the excitation 

is due to waves under fully developed sea conditions with 
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mean wind velocity V for which the Pierson - Moskowitz 

spectrum S° (en)  for the ocean-surface elevation has been 

used; 

g. („) B2L  e-ßK/o»)
4 (59) 

<D 

-3 
where a = 8.10 x 10  ,  ß = 0.74 and co0 = g/V with 

g = acceleration due to gravity and V = mean wind velocity. 

The application of this type of Monte Carlo approach 

has also been made to other nonlinear structural response 

analysis [3,4,21,22,23]. 

(b)  The method can be applied to the failure analysis 

of a structure with spatially random ,variation of strength 

and other material properties.  In this case, sample struc- 

tures are generated by digitally generating such spatial 

variations of strength and other material properties. 

When correlated spatial variations are observed on more 

than one material property (e.g.  Young's modulus and 

density), usually a multidimensional multivariate process 

has to be generated with the aid of the method described 

in Section 4. 

Applying to each of these sample structures a sample 

stress history of a random stress process, the fatigue 

life of a sample structure can be computed under the 
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assumption of a certain fatigue failure mechanism. The 

statistical variation of the fatigue life thus computed 

establishes its empirical distribution under the random 

stress process in the Monte Carlo sense. This approach 

was successfully taken in Ref. [24]. A similar problem in 

which the empirical distribution of the static failure 

load is to be found for a concrete structure with spatial 

strength variation is treated" in detail in Ref. [25]. 

(c)  The method can be employed effectively when the 

structural system to be analyized is complex even though 

it involves neither nonlinearity nor random variation of 

material properties.  The mean square responses (displace- 
A ■ ■ ■ 

ment, shear force and bending moment) of a large floating 

plate to wind-induced random ocean-waves are computed in 

Ref. [26] taking the temporal averages of sample response 

functions as in Ref. [20].  The analysis is essentially 

numerical since sample functions of the wind-induced ocean- 

surface elevation are digitally generated and the corres- 

ponding response functions are numerically obtained.  This 

was done because the ocean-structure system considered was 

too complex to solve analytically.  Another example of this 

kind is the study of the dynamic interaction between moving 

vehicles and a bridge with random pavement surface rough- 
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ness [27].  In this problem the random pavement surface   ?^ -- 

roughness is digitally simulated for numerical response 

■"analysis. V'-.r^v^/-'.'';''"."';.. ■';'-• 

In some problems of mechanics, a structure is considered 

complex when its material properties are spatially random. 

The wave propagation through a random medium is one of these 

problems.  In Ref. [28], the stress wave propagation through 

a finite cylinder with random"material properties is treated 

under the condition that the one end of the cylinder is acted 

upon by an impact load and the other end is free.  A set 

of one hundred samples of correlated random material properties 

(Young's modulus and density) are generated thus producing 

one hundred sample cylinders.  The finite element method is 

applied for the stress analysis to compute maximum stress 

intensity in each of these cylinders due to the impact.  An 

empirical distribution of the maximum stress intensity is 

then established in the Monte Carlo sense. 

(d)  Finally, the method is often useful when the 

problem is to determine eigenvalues (frequencies and buckling 

loads) of the structure with random material properties.  As 

in the case of the wave propagation problems, sample struc- 

tures are generated and the statistical distribution of 

eigenvalues of these structures are treated as the empir - 
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leal distribution of the eigenvalue of interest.  An 

example of this problem is given in Ref. [29]..     ■ 
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Fig. 1 One-sided spectral density 
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Fig. 5 Simulation of wind velocity at different points 



\ B 
\ 0) 

■P 
\ to 
\ >1 

01 
\ 
V 
V •H 

\ Oi 
1 
ß 

V 
\- o 
\ 
\ VO 

\ • 
\ en 
\ 

•rl 

\ 
\ 



(0 

c 
^_ '„T^ 

CO c 
CD o 
c 2 
_J 

i--- — T 

v. 

»0 
Ö 

•r« 
> 
c 
m 
<u 

•p 
(0 

ß 
o 

•H 
•P 
U 
C! 
3 o 

«w 0) 
0) 

© \ 
0) ■P 
c «H 
0 
& VO 
to --■   • 

0) m 
n w 
(U >i 
l-i +> 
Q> ■H 
B O 
a 0 m iH 

dJ 
«H > 
0 

c 
0 

•H 
+> 
u 
tt) 
to 

•H 
ELI 

in) (*'o)n uoipeuea 



unclassified 
Security Classification 

DOCUMENT CONTROL DATA - R & D 
(Security classification of title,  body of abstract and Indexing annotation must be entered when the overall report Is classified) 

t. OHIGINATING  ACTIVITY (Corporate author) 

Columbia University 

2». REPORT SECURITY   CLASSIFICATION 

Unclassified 
26. GROUP 

3. REPORT TITLE 

Monte Carlo Solution of Structural Dynamics 

4. DESCRIPTIVE NOTES (Type of report end inclusive dates) 

Technical Report 
S-  AUTHORIS) (First name, middle initial, last name) 

M.   Shinozuka 

6.   REPORT  DATE 

March 27 - 29,   1972 
7«.   TOTAL  NO.   OF  PAGES 

48 
76.   NO.  OF  REFS 

29 
Ba     CONTRAC T   OR   GRANT   NO. 

National Science Foundation 
b.   PROJEC T  NO. 

Grant GK 24925 

9a.  ORIGINATOR'S  REPORT NUMBER(S) 

NSF GK 24925 

Technical Report No. 19 
96. OTHER REPORT NOtS) (Any other numbers that may be assigned 

this report) 

10.   DISTRIBUTION  STATEMENT 

Distribution is  unlimited 

II.   SUPPLEMENTARY   NOTES 12.  SPONSORING MILITARY   ACTIVITY 

None 

13.   ABSTRACT 

In spite of the recent remarkable advance in the area of stochastic 
mechanics, the present state of art still leaves a number of difficulties 
unsolved that must be overcome before the approach becomes more useful. 
Such problem areas include (1)  random response analysis of highly non- 
linear structures, (2)  failure analysis of structures under random 
loading, (3)  analysis of extremely complex systems and, (4)  random 
eigenvalue problems. 

The recent advent of high speed digital computers, however, has made it 
not only possible but also highly practical to apply the Monte Carlo 
techniques to a large variety of engineering problems.  The present 
paper presents a technique of digital simulation of multivariate and/or 
multidimensional Gaussian random processes (homogeneous or nonhomogeneous 
which can represent physical processes germane to structural engineering. 
The paper also describes a method of digital simulation of envelope 
functions.  Such simulations are accomplished in terms of a sum of cosine 
functions with random phase angles and used as the basic tool in a 
general Monte Carlo method of solution to a wide class of problems in 
structural engineering, particularly those mentioned above. 

L 
DD,F

N°oRvMJ473   <PAGE n 
Unclassified 

C /*J  AlAIOA^CQrtl Security Classification 



Unclassified 
Security Classification 

KEY WORDS 

Monte Carlo Techniques 

Simulation of Multivariate and/or 
Multidimensional Random Processes 

Stochastic Mechanics 

F FT 

Nonstationary or Nonhomogeneous 
Stochastic Processes 

Random Vibration 

Envelope Processes 

< 

t 

>D,TvM.,1473 (BACK) 


